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Abstract
We exemplify the way the rigged Hilbert space deals with the Lippmann–
Schwinger equation by way of the spherical shell potential. We explicitly
construct the Lippmann–Schwinger bras and kets along with their energy
representation, their time evolution and the rigged Hilbert spaces to which
they belong. It will be concluded that the natural setting for the solutions of
the Lippmann–Schwinger equation—and therefore for scattering theory—is
the rigged Hilbert space rather than just the Hilbert space.

PACS numbers: 03.65.−w, 02.30.Hq

1. Introduction

Scattering experiments play a central role in our understanding of the microscopic world. For
example, Compton scattering of x-rays by electrons is held as experimental evidence for the
particle nature of the photon; much of what has been learned about the structure of the nucleus,
indeed even its discovery, was the results of scattering experiments; the analysis of scattering
has yielded most of our present knowledge of elementary particle physics [1]. Scattering
theory was developed in order to understand such experiments.

The Lippmann–Schwinger equation is one of the cornerstones of scattering theory. It was
introduced by Lippmann and Schwinger in 1950 [2], and it has become a commonplace in
scattering theory [3–6]. It is written as

|E±〉 = |E〉 +
1

E − H0 ± iε
V |E±〉, (1.1)

where |E±〉 represent the ‘in’ and ‘out’ Lippmann–Schwinger kets, |E〉 represents an eigenket
of the free Hamiltonian H0,

H0|E〉 = E|E〉, (1.2)
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and V is the potential. The Lippmann–Schwinger kets are, in particular, eigenvectors of H:

H |E±〉 = E|E±〉. (1.3)

To the kets |E±〉, there correspond the bras 〈±E|, which satisfy

〈±E| = 〈E| + 〈±E|V 1

E − H0 ∓ iε
. (1.4)

The bras 〈±E| are left eigenvectors of H,

〈±E|H = E〈±E|, (1.5)

and the bras 〈E| are left eigenvectors of H0,

〈E|H = E〈E|. (1.6)

In spite of its wide acceptance, the Lippmann–Schwinger equation still lacks a proper
mathematical setting. There are mainly two problems. First, the bras 〈±E| and the kets |E±〉
are not square integrable (i.e., they lie outside the Hilbert space), and therefore they must be
treated as distributions. And second, in resonance theory the bras 〈±E| and the kets |E±〉 need
to be analytically continued into the complex plane [7–14]. Both problems can be handled by
means of the rigged Hilbert space (RHS). In this paper, we shall focus on the first problem,
namely on how to accommodate the Lippmann–Schwinger bras and kets for real, positive
energies within the RHS setting. The second problem will be addressed in a sequel to this
paper.

The present paper is the continuation of [15–18], where we showed how the RHS deals
with continuous spectrum. As we shall see, the methods of [15–18] can be straightforwardly
applied to the Lippmann–Schwinger equation.

We recall that a rigged Hilbert space is a triad of spaces (see [19] for a pedagogical
introduction to the RHS)

Φ ⊂ H ⊂ Φ× (1.7)

such that H is a Hilbert space, Φ is a dense subspace of H, and Φ× is the space of antilinear
functionals over Φ. The space Φ× is called the antidual space of Φ. The space Φ is the
largest subspace of the Hilbert space such that first, it remains invariant under the action of the
Hamiltonian, and second, the action of the Lippmann–Schwinger bras and kets is well defined
on its elements. Associated with the RHS (1.7), there is always another RHS,

Φ ⊂ H ⊂ Φ′, (1.8)

where Φ′ is called the dual space of Φ and contains the linear functionals over Φ. As we shall
show, the Lippmann–Schwinger bras 〈±E| belong to Φ′, whereas the Lippmann–Schwinger
kets |E±〉 belong to Φ×.

It should be emphasized that our RHS does not entail an extension of the physical
principles of scattering theory. Our RHS simply enables us to extract and process information
contained in the Lippmann–Schwinger bras and kets.

There have been previous attempts at describing the Lippmann–Schwinger equation within
the RHS setting in [8–14]. Our results will be different from those of [8–14] in the following
sense. First, [8–14] use formal manipulations based on the Hardy-space assumption, whereas
our approach is based on an explicitly solvable example; what is more, we do not make
any assumption concerning Hardy functions, because Hardy functions seem unrelated to the
solutions of the Lippmann–Schwinger equation. Second, [8–14] use two different RHSs (of
Hardy functions), whereas we shall use only one RHS. Third, the Hardy-function assumption
of [8–14] implies that the time evolution of the Lippmann–Schwinger bras and kets associated
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Figure 1. Schematic, pictorial representation of a scattering process.

with real energies is given by a semigroup, whereas in this paper the time evolution of the
Lippmann–Schwinger bras and kets is given by a group. And fourth, using Hardy functions
as in [8–14] entails an extension of the physical principles of scattering theory, whereas in this
paper we shall remain within standard quantum scattering theory.

This paper is organized as follows: in section 2, we recall some of the basics of scattering
theory. In section 3, we obtain the Lippmann–Schwinger eigenfunctions in the radial, position
representation for the spherical shell potential and for zero angular momentum. In section 4, we
recall the expressions for the domain, the spectrum and the Green function of the Hamiltonian.
In section 5, we obtain the unitary operators U±, the eigenfunction expansions and the direct
integral decompositions generated by the Lippmann–Schwinger eigenfunctions. In section 6,
we construct the Lippmann–Schwinger bras and kets from the corresponding eigenfunctions,
and we obtain their most relevant properties. In section 7, we calculate the time evolution
of the Lippmann–Schwinger bras and kets. In section 8, we justify some standard results of
scattering theory within the RHS setting. In section 9, we state our conclusions.

2. A reminder of scattering theory

A scattering process can be pictorially summarized as in figure 1. Loosely speaking, we send
a beam of prepared initial ‘in’ states ϕin towards the potential. After the collision takes place,
ϕin becomes ϕout. We then measure the probability of finding a final ‘out’ state ψout. The
amplitude of this probability is given by

(ψout, ϕout) = (ψout, Sϕin), (2.1)

where S is the S matrix. The state ϕin is determined by initial conditions through a preparation
procedure (e.g., an accelerator). The state ϕout = Sϕin is determined by those initial conditions
through ϕin and by the scattering process through the S matrix. The state ψout is determined
by final conditions through a registration procedure (e.g., a detector).

The initial ‘in’ state ϕin and the final ‘out’ state ψout are asymptotic forms of the so-called
‘in’ state ϕ+ and ‘out’ state ψ− in the remote past and in the distant future, respectively. In
terms of these, the probability amplitude (2.1) reads

(ψout, ϕout) = (ψ−, ϕ+). (2.2)
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The asymptotic states ϕin and ψout are related to the ‘exact’ states ϕ+ and ψ− by the Møller
operators,

�+ϕ
in = ϕ+, (2.3a)

�−ψout = ψ−. (2.3b)

It is important to keep in mind that the states ϕin, ϕout and ψout (or ϕ+ and ψ−) are
not the central object of quantum scattering. The central object of quantum scattering is the
probability amplitude (2.1)–(2.2), which measures the overlap between the ‘in’ (i.e., prepared)
and the ‘out’ (i.e., detected) states. This is in distinction to classical scattering, where the
states ϕin, ϕ+ and ϕout do actually represent a physical wave, and where we actually are able
to observe ϕout rather than the overlap of ϕout with some ψout.

It is customary to split up the (total) Hamiltonian H into the free Hamiltonian H0 and the
potential V ,

H = H0 + V. (2.4)

The potential V is interpreted as the interaction between the components of the initial prepared
states, for instance, the interaction between the in-going beam and the target. The states ϕin

and ψout evolve under the influence of the free Hamiltonian H0, whereas the states ϕ+ and ψ−

evolve under the influence of the (total) Hamiltonian H.
The dynamics of a scattering system is therefore governed by the Schrödinger equation

subject to boundary conditions that specify what is ‘in’ and what is ‘out.’ The Lippmann–
Schwinger equation (1.1) for the ‘in’ |E+〉 and ‘out’ |E−〉 kets has those ‘in’ and ‘out’ boundary
conditions built into the ±iε, since equation (1.1) is equivalent to the time-independent
Schrödinger equation (1.3) subject to those ‘in’ (+iε) and ‘out’ (−iε) boundary conditions. In
the position representation, the +iε prescription yields the following asymptotic behaviour:

〈x|E+〉−−→
r→∞ eikz + f (θ, φ)

eikr

r
, (2.5)

where x ≡ (x, y, z) ≡ (r, θ, φ) are the position coordinates, k is the wave number and f (θ, φ)

is the so-called scattering amplitude. Thus, far away from the potential region, 〈x|E+〉 is a
linear combination of a plane wave (which originates from the free part in equation (1.1)) and
an outgoing spherical wave multiplied by the scattering amplitude (which originates from the
second term on the right-hand side of equation (1.1), and which accounts for the effect of
the potential on the incoming beam). The −iε prescription leads to the following asymptotic
behaviour:

〈x|E−〉−−→
r→∞ eikz + f (θ, φ)

e−ikr

r
; (2.6)

thus, far away from the potential region, 〈x|E−〉 is a combination of a plane wave and an
incoming spherical wave multiplied by the complex conjugate of f (θ, φ).

Formally, the ‘in’ state ϕ+ and the ‘out’ state ψ− can be expanded in terms of the
Lippmann–Schwinger bras and kets as follows:

ϕ+ =
∫ ∞

0
dE|E+〉〈+E|ϕ+〉, (2.7)

ψ− =
∫ ∞

0
dE|E−〉〈−E|ψ−〉. (2.8)

The ‘in’ (‘out’) states can be also expanded in terms of the ‘out’ (‘in’) Lippmann–Schwinger
bras and kets:
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ϕ+ =
∫ ∞

0
dE|E−〉〈−E|ϕ+〉, (2.9)

ψ− =
∫ ∞

0
dE|E+〉〈+E|ψ−〉. (2.10)

By combining equations (2.7)–(2.8) with the relation

〈−E′|E+〉 = S(E)δ(E − E′), (2.11)

we can express the matrix element (2.2) as

(ψ−, ϕ+) =
∫ ∞

0
dE〈ψ−|E−〉S(E)〈+E|ϕ+〉. (2.12)

Formally as well, the initial and final states can be expanded by the bras and kets of the
free Hamiltonian:

ϕin =
∫ ∞

0
dE|E〉〈E|ϕin〉, (2.13)

ψout =
∫ ∞

0
dE|E〉〈E|ψout〉, (2.14)

and the probability amplitude (2.1) can be written as

(ψout, Sϕin) =
∫ ∞

0
dE〈ψout|E〉S(E)〈E|ϕin〉, (2.15)

where we have used equations (2.13)–(2.14) and the relation

〈E′|S|E〉 = S(E)δ(E − E′). (2.16)

As we shall see in section 8, the formal expressions (2.7)–(2.16) acquire meaning within the
RHS.

3. Solving the Lippmann–Schwinger equation

For the spherical shell potential, the Lippmann–Schwinger equation can be solved explicitly.
For the sake of focus, we shall restrict ourselves to angular momentum l = 0.

3.1. The radial Lippmann–Schwinger equation

The expression for the spherical shell potential is given by

V (x) ≡ V (r) =


0 0 < r < a

V0 a < r < b

0 b < r < ∞,

(3.1)

where V0 is a positive number that determines the strength of the potential, and a and b
determine the positions in between which the potential is nonzero. Because the potential
(3.1) is spherically symmetric, we shall work in the radial position representation. In this
representation and for l = 0, the free Hamiltonian H0 acts as the formal differential operator
h0,

H0f (r) = h0f (r) = − h̄2

2m

d2

dr2
f (r), (3.2)
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V acts as multiplication by the rectangular barrier potential V (r),

(Vf )(r) = V (r)f (r), (3.3)

and the total Hamiltonian H acts as the formal differential operator h,

Hf (r) = hf (r) =
(

− h̄2

2m

d2

dr2
+ V (r)

)
f (r). (3.4)

In the radial representation, the Lippmann–Schwinger equation (1.1) becomes

〈r|E±〉 = 〈r|E〉 + 〈r| 1

E − H0 ± iε
V |E±〉. (3.5)

In equation (3.5), the 〈r|E〉 are eigenfunctions of the formal differential operator h0,

h0〈r|E〉 = E〈r|E〉, (3.6)

whereas the 〈r|E±〉 are eigenfunctions of the formal differential operator h,

h〈r|E±〉 = E〈r|E±〉, (3.7)

subject to the boundary conditions specified by equations (3.9a)–(3.9e).

3.2. The solutions to the radial Lippmann–Schwinger equation

The procedure to solve equation (3.5) is well known [5, 6]. Since equation (3.5) is an integral
equation, it is equivalent to a differential equation subject to the boundary conditions that are
built into that integral equation. In our case, for l = 0, equation (3.5) is equivalent to the
Schrödinger differential equation,(

− h̄2

2m

d2

dr2
+ V (r)

)
〈r|E±〉 = E〈r|E±〉, (3.8)

subject to the following boundary conditions,

〈r|E±〉 = 0, (3.9a)

〈r|E±〉 is continuous at r = a, b, (3.9b)

d

dr
〈r|E±〉 is continuous at r = a, b, (3.9c)

〈r|E+〉 ∼ e−ikr − S(E) eikr as r → ∞, (3.9d)

〈r|E−〉 ∼ eikr − S(E) e−ikr as r → ∞, (3.9e)

where

k =
√

2m

h̄2 E (3.10)

is the wave number, and S(E) is the S matrix in the energy representation. We recall that
the boundary conditions (3.9d) and (3.9e) originate from the +iε and from the −iε conditions
of equation (3.5), respectively. The boundary condition (3.9d) means that far away from the
potential region, 〈r|E+〉 is a combination of an incoming spherical wave and an outgoing
spherical wave multiplied by the S matrix. The boundary condition (3.9e) means that far
away from the potential region, 〈r|E−〉 is a combination of an outgoing spherical wave and an
incoming spherical wave multiplied by the complex conjugate of the S matrix. The asymptotic
behaviours (3.9d) and (3.9e) are the l = 0, radial counterparts of the asymptotic behaviours
(2.5) and (2.6).
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If we insert expression (3.1) for the potential into equation (3.8), and solve equation (3.8)
subject to the boundary conditions (3.9a)–(3.9e), we obtain the ‘in’ and ‘out’ eigenfunctions,

〈r|E±〉 ≡ χ±(r;E) = N(E)
χ(r;E)

J±(E)
, E ∈ [0,∞), (3.11)

where N(E) is a delta-normalization factor,

N(E) =
√

1

π

2m/h̄2√
2m/h̄2E

, (3.12)

χ(r;E) is the so-called regular solution of equation (3.8),

χ(r;E) =


sin
(√

2m

h̄2 Er
)

0 < r < a

J1(E) e
i
√

2m

h̄2 (E−V0)r + J2(E) e
−i
√

2m

h̄2 (E−V0)r
a < r < b

J3(E) e
i
√

2m

h̄2 Er
+ J4(E) e

−i
√

2m

h̄2 Er
b < r < ∞,

(3.13)

and J±(E) are the Jost functions,

J+(E) = −2iJ4(E), (3.14a)

J−(E) = 2iJ3(E). (3.14b)

The explicit expressions for J1–J4 can be obtained by matching the values of χ(r;E) and of
its derivative at the discontinuities of the potential (see equations (B.1)–(B.4) in appendix B).
In terms of the Jost functions, the S matrix is given by [5, 6]

S(E) = J−(E)

J+(E)
, E ∈ [0,∞). (3.15)

From equation (3.11) it follows that the ‘in’ and ‘out’ Lippmann–Schwinger eigenfunctions
are proportional to each other,

χ+(r;E) = S(E)χ−(r;E). (3.16)

3.3. The ‘left’ Lippmann–Schwinger eigenfunctions

When we write equation (1.4) in the radial position representation, we obtain an integral
equation for the ‘left’ Lippmann–Schwinger eigenfunctions,

〈±E|r〉 = 〈E|r〉 + 〈±E|V 1

E − H0 ∓ iε
|r〉. (3.17)

Solving equation (3.17) is analogous to solving equation (3.5). For l = 0, equation (3.17) is
equivalent to the Schrödinger differential equation,(

− h̄2

2m

d2

dr2
+ V (r)

)
〈±E|r〉 = E〈±E|r〉, (3.18)

subject to the following boundary conditions:

〈±E|0〉 = 0, (3.19a)

〈±E|r〉 is continuous at r = a, b, (3.19b)

d

dr
〈±E|r〉 is continuous at r = a, b, (3.19c)
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〈+E|r〉 ∼ eikr − S(E) e−ikr as r → ∞, (3.19d)

〈−E|r〉 ∼ e−ikr − S(E) eikr as r → ∞. (3.19e)

Note that the boundary conditions (3.19d) and (3.19e) originate from the −iε and from the
+iε conditions of equation (3.17), respectively.

By inserting equation (3.1) into equation (3.18), and by solving equation (3.18) subject
to the boundary conditions (3.19a)–(3.19e), we obtain that the ‘left’ Lippmann–Schwinger
eigenfunctions 〈±E|r〉 are the complex conjugates of the ‘right’ Lippmann–Schwinger
eigenfunctions 〈r|E±〉,

〈±E|r〉 ≡ χ±(r;E). (3.20)

4. Domain, spectrum and resolvent

In this section, we include the expressions for the domain, the spectrum and the resolvent of
H. Such expressions were obtained in [14] and are included in this section because we shall
need them in subsequent sections.

The formal differential operator (3.4) has an infinite number of self-adjoint extensions
[20]. These self-adjoint extensions are characterized by the following boundary conditions
[20]:

f (0) + αf ′(0) = 0, −∞ < α � ∞. (4.1)

Among all these, the boundary condition needed in scattering theory is

f (0) = 0. (4.2)

The boundary condition (4.2) selects the following domain for the Hamiltonian:

D(H) = {f (r)|f (r), hf (r) ∈ L2([0,∞), dr), f (r) ∈ AC2[0,∞), f (0) = 0}, (4.3)

where AC2[0,∞) denotes the space of functions whose first derivative is absolutely
continuous. This domain induces a self-adjoint operator H,

(Hf )(r) =
(

− h̄2

2m

d2

dr2
+ V (r)

)
f (r), f ∈ D(H). (4.4)

The spectrum of H, Sp(H), was shown in [14] to be [0,∞). In [14], we also calculated
the Green function G(r, s;E) of H for different regions of the complex energy plane. In all
our calculations, we used the following branch for the square root function:√· : {E ∈ C| − π < arg(E) � π} �−→ {E ∈ C| − π/2 < arg(E) � π/2}. (4.5)

The branch (4.5) grants the following relation,√
E =

√
E, E ∈ C, (4.6)

which in general does not hold for other branches of the square root function.
Either by applying theorem 1 of appendix A, or by borrowing the results from [14], one

can see that in the first quadrant of the energy plane, the Green function can be written as

G(r, s;E) =
{−πN(E)χ+(r;E)f +(s;E) r < s

−πN(E)χ+(s;E)f +(r;E) r > s
Re(E) > 0, Im(E) > 0, (4.7)

whereas in the fourth quadrant its expression reads

G(r, s;E) =
{−πN(E)χ−(r;E)f −(s;E) r < s

−πN(E)χ−(s;E)f −(r;E) r > s
Re(E) > 0, Im(E) < 0. (4.8)
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In equations (4.7)–(4.8), χ±(r;E) are given by equation (3.11), N(E) is given by
equation (3.12), and the eigenfunctions f ±(r;E) are given by

f ±(r;E) =


A±

1 (E) e
i
√

2m

h̄2 Er
+ A±

2 (E) e
−i
√

2m

h̄2 Er
0 < r < a

A±
3 (E) e

i
√

2m

h̄2 (E−V0)r + A±
4 (E) e

−i
√

2m

h̄2 (E−V0)r
a < r < b

e
±i
√

2m

h̄2 Er
b < r < ∞.

(4.9)

The coefficients A±
1 –A±

4 can be obtained by matching the values of f ±(r;E) and of their
derivatives at the discontinuities of the potential (see equations (B.6)–(B.9) in appendix B).

5. The operators U± and U0

In this section, we obtain the Fourier-like transforms U±, the eigenfunction expansions and the
direct integral decompositions generated by the ‘in’ and ‘out’ eigenfunctions. The operators
U± will be obtained by applying the Sturm–Liouville theory (see [20] and appendix A). We
shall end this section by recalling the expression for the Fourier-like transform U0 associated
with the free Hamiltonian.

5.1. The ‘in’ unitary operator U+

The procedure to obtain U+ consists of applying theorems 2, 3 and 4 of appendix A. In
order to be able to apply theorem 4, we choose the following basis for the space of solutions
of hσ = Eσ that is continuous on (0,∞) × (0,∞) and analytically dependent on E in a
neighbourhood of (0,∞):

σ1(r;E) = χ+(r;E), (5.1a)

σ2(r;E) =


cos
(√

2m

h̄2 Er
)

0 < r < a

C1(E) e
i
√

2m

h̄2 (E−V0)r + C2(E) e
−i
√

2m

h̄2 (E−V0)r
a < r < b

C3(E) e
i
√

2m

h̄2 Er
+ C4(E) e

−i
√

2m

h̄2 Er
b < r < ∞.

(5.1b)

The functions C1–C4 can be obtained by matching the values of σ2(r;E) and its first
derivative at the discontinuities of the potential (see equations (B.10)–(B.13) in appendix B).
Equations (4.9) and (5.1a)–(5.1b) lead to

f +(r;E) = 2iJ4(E)C4(E)

N(E)W(E)
σ1(r;E) +

J4(E)

W(E)
σ2(r;E) (5.2)

and to

f −(r;E) = −2iJ4(E)C3(E)

N(E)W(E)
σ1(r;E) − J3(E)

W(E)
σ2(r;E), (5.3)

where

W(E) ≡ J4(E)C3(E) − J3(E)C4(E). (5.4)

After substituting equation (5.2) into equation (4.7) we arrive at

G(r, s;E) = −π
N(E)

W(E)

[
2iJ4(E)C4(E)

N(E)
σ1(r;E) + J4(E)σ2(r;E)

]
σ1(s;E),

Re(E) > 0, Im(E) > 0, r > s. (5.5)
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After substituting equation (5.3) into equation (4.8) we arrive at

G(r, s;E) = −π
N(E)

W(E)

J4(E)

J3(E)

[
2iJ4(E)C3(E)

N(E)
σ1(r;E) + J3(E)σ2(r;E)

]
σ1(s;E),

Re(E) > 0, Im(E) < 0, r > s, (5.6)

where we have used the relation

χ−(r;E) = −J4(E)

J3(E)
χ+(r;E). (5.7)

Because by equation (4.6)

χ+(s;E) = −J4(E)

J3(E)
χ+(s;E), (5.8)

equation (5.5) leads to

G(r, s;E) = 2π i
J3(E)C4(E)

W(E)
σ1(r;E)σ1(s;E) + π

N(E)J3(E)

W(E)
σ2(r;E)σ1(s;E),

Re(E) > 0, Im(E) > 0, r > s, (5.9)

and equation (5.6) leads to

G(r, s;E) = 2π i
J4(E)C3(E)

W(E)
σ1(r;E)σ1(s;E) + π

N(E)J3(E)

W(E)
σ2(r;E)σ1(s;E),

Re(E) > 0, Im(E) < 0, r > s. (5.10)

On the other hand, the Green function can be written in terms of the basis {σ1, σ2} of
equations (5.1a)–(5.1b) as (see equation (A.9) in theorem 4)

G(r, s;E) =
2∑

i,j=1

θ+
ij (E)σi(r;E)σj (s;E), r > s. (5.11)

By comparing (5.11) to (5.9), we obtain

θ+
ij (E) =

(
2π iJ3(E)C4(E)

W(E)
0

π N(E)J3(E)

W(E)
0

)
, Re(E) > 0, Im(E) > 0. (5.12)

By comparing (5.11) to (5.10), we obtain

θ+
ij (E) =

(
2π iJ4(E)C3(E)

W(E)
0

π N(E)J3(E)

W(E)
0

)
, Re(E) > 0, Im(E) < 0. (5.13)

From equations (5.12) and (5.13) it follows that the measures ρ12, ρ21 and ρ22 of
equation (A.10) are zero, and that ρ11 is given by

ρ11((E1, E2)) = 1

2π i

∫ E2

E1

2π i
J4(E)C3(E) − J3(E)C4(E)

W(E)
dE

=
∫ E2

E1

dE = E2 − E1,

(5.14)

where we have used (5.4) in the second step. Therefore, the measure ρ11 is just the Lebesgue
measure, which means, in particular, that the eigenfunctions χ+(r;E) are δ-normalized (see
also section 2.9 of [16]).
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By theorem 2 of appendix A, there is a unitary operator U+ that transforms from the
position representation into the energy representation,

U+ : L2([0,∞), dr) �−→ L2([0,∞), dE)

f (r) �−→ f̂ +(E) = (U+f )(E) =
∫ ∞

0
drf (r)χ+(r;E),

(5.15)

where f̂ +(E) denotes the energy representation of the function f (r) when obtained by way
of U+. The action of U+ on the domain D(H) is given by

D(Ĥ ) = U+D(H) =
{
f̂ +(E) ∈ L2([0,∞), dE)

∣∣∣∣ ∫ ∞

0
dE|Ef̂ +(E)|2 < ∞

}
. (5.16)

It can be easily checked that the operator U+ diagonalizes H in the sense that Ĥ ≡ U+HU−1
+

acts as the operator multiplication by E,

Ĥ : D(Ĥ ) ⊂ L2([0,∞), dE) �−→ L2([0,∞), dE)

f̂ + �−→ Ĥ f̂ +(E) = Ef̂ +(E).
(5.17)

The inverse of U+ is given by equation (A.6):

f (r) = U−1
+ f̂ +(r) =

∫ ∞

0
dEf̂ +(E)χ+(r;E), f̂ +(E) ∈ L2([0,∞), dE). (5.18)

The operator U−1
+ transforms from the energy representation back into the position

representation. Expressions (5.15) and (5.18) provide the eigenfunction expansions of any
square integrable function in terms of the ‘in’ eigensolutions.

The operator U+, and therefore the ‘in’ eigenfunctions χ+(r;E), entails a direct integral
decomposition of the Hilbert space in a straightforward manner:

H �−→ U+H ≡ Ĥ = ⊕
∫

Sp(H)

H(E) dE

f �−→ U+f ≡ {f̂ +(E)}, f ∈ D(H), f̂ +(E) ∈ H(E).

(5.19)

In this equation, the Hilbert spaces H, Ĥ and H(E) are respectively realized by
L2([0,∞), dr), L2([0,∞), dE) and C.

5.2. The ‘out’ unitary operator U−

The construction of U− follows the same procedure as the construction of U+. The functions

σ1(r;E) = χ−(r;E), (5.20a)

σ2(r;E) =


cos
(√

2m

h̄2 Er
)

0 < r < a

C1(E) e
i
√

2m

h̄2 (E−V0)r + C2(E) e
−i
√

2m

h̄2 (E−V0)r
a < r < b

C3(E) e
i
√

2m

h̄2 Er
+ C4(E) e

−i
√

2m

h̄2 Er
b < r < ∞

(5.20b)

form another basis for the space of solutions of hσ = Eσ that is continuous on (0,∞)×(0,∞)

and analytically dependent on E in a neighbourhood of (0,∞). Therefore, we are allowed to
apply theorem 4 of appendix A. Equations (4.9) and (5.20a)–(5.20b) lead to

f +(r;E) = −2iJ3(E)C4(E)

N(E)W(E)
σ1(r;E) +

J4(E)

W(E)
σ2(r;E) (5.21)
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and to

f −(r;E) = 2iJ3(E)C3(E)

N(E)W(E)
σ1(r;E) − J3(E)

W(E)
σ2(r;E). (5.22)

By substituting equations (5.21) and (5.7) into equation (4.7), we obtain

G(r, s;E) = πN(E)
J3(E)

J4(E)

[
−2iJ3(E)C4(E)

N(E)W(E)
σ1(r;E) +

J4(E)

W(E)
σ2(r;E)

]
σ1(s;E),

Re(E) > 0, Im(E) > 0, r > s. (5.23)

By substituting equation (5.22) into equation (4.8), we obtain

G(r, s;E) = −πN(E)

[
2iJ3(E)C3(E)

N(E)W(E)
σ1(r;E) − J3(E)

W(E)
σ2(r;E)

]
σ1(s;E),

Re(E) > 0, Im(E) < 0, r > s. (5.24)

Because by equation (4.6)

χ−(s;E) = −J3(E)

J4(E)
χ−(s;E), (5.25)

Equation (5.23) leads to

G(r, s;E) = 2π i
J3(E)C4(E)

W(E)
σ1(r;E)σ1(s;E) − π

N(E)J4(E)

W(E)
σ2(r;E)σ1(s;E),

Re(E) > 0, Im(E) > 0, r > s, (5.26)

and equation (5.24) leads to

G(r, s;E) = 2π i
J4(E)C3(E)

W(E)
σ1(r;E)σ1(s;E) − π

N(E)J4(E)

W(E)
σ2(r;E)σ1(s;E),

Re(E) > 0, Im(E) < 0, r > s. (5.27)

On the other hand, by way of equation (A.9), we can write the Green function in terms of the
basis {σ1, σ2} of equations (5.20a)–(5.20b) as

G(r, s;E) =
2∑

i,j=1

θ+
ij (E)σi(r;E)σj (s;E), r > s. (5.28)

By comparing (5.28) to (5.26), we obtain

θ+
ij (E) =

(
2π iJ3(E)C4(E)

W(E)
0

−π N(E)J4(E)

W(E)
0

)
, Re(E) > 0, Im(E) > 0. (5.29)

By comparing (5.28) to (5.27), we obtain

θ+
ij (E) =

(
2π iJ4(E)C3(E)

W(E)
0

−π N(E)J4(E)

W(E)
0

)
, Re(E) > 0, Im(E) < 0. (5.30)

From equations (5.29), (5.30) and (A.10), it follows that the measures ρ12, ρ21 and ρ22 in
theorem 4 of appendix A are zero, and that ρ11 is given by the Lebesgue measure,

ρ11((E1, E2)) =
∫ E2

E1

dE = E2 − E1. (5.31)

This means, in particular, that the χ−(r;E) are δ-normalized.
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By theorem 2 of appendix A, there is a unitary operator U− that transforms from the
position into the energy representation,

f̂ −(E) = (U−f )(E) =
∫ ∞

0
drf (r)χ−(r;E), f (r) ∈ L2([0,∞), dr), (5.32)

where f̂ −(E) denotes the energy representation of f (r) when obtained by way of U−. The
inverse of U− is given by equation (A.6):

f (r) = (U−1
− f̂ −)(r) =

∫ ∞

0
dEf̂ −(E)χ−(r;E), f̂ −(E) ∈ L2([0,∞), dE). (5.33)

Likewise U−1
+ , the operator U−1

− transforms from the energy representation into the position
representation. Likewise U+, U− carries the domain D(H) onto the domain (5.16), and
Ĥ ≡ U−HU−1

− acts as the operator multiplication by E. As well, expressions (5.32) and (5.33)
provide the expansions of any square integrable function in terms of the ‘out’ eigenfunctions,
and a direct integral decomposition similar to (5.19).

5.3. The ‘free’ unitary operator U0

The operator U0 was constructed in [14, 17]. Because we shall need U0 in order to construct
the Møller operators, in this subsection we recall the expression for U0.

The regular (i.e., vanishing at r = 0), δ-normalized eigensolution of the differential
operator (3.2) is given by

χ0(r;E) = N(E) sin

(√
2m

h̄2 Er

)
, 0 < r < ∞. (5.34)

This eigensolution can be used to construct the unitary operator

U0 : L2([0,∞), dr) �−→ L2([0,∞), dE)

f �−→ U0f ≡ f̂0

(5.35)

that transforms from the position into the energy representation. The action of U0 can be
written as an integral operator:

f̂ 0(E) = U0f (E) =
∫ ∞

0
drf (r)χ0(r;E), f (r) ∈ L2([0,∞), dr), (5.36)

where f̂ 0(E) denotes the energy representation of f (r) when obtained by way of U0. The
inverse of U0 can also be written as an integral operator:

f (r) = U−1
0 f̂ 0(r) =

∫ ∞

0
dEf̂ 0(E)χ0(r;E), f̂ 0(E) ∈ L2([0,∞), dE). (5.37)

Expressions (5.36) and (5.37) provide the expansions of any square integrable function in
terms of the ‘free’ eigenfunctions.

Note that since the Lippmann–Schwinger eigenfunctions tend to the ‘free’ eigenfunctions
when the potential vanishes,

lim
V0→0

χ±(r;E) = χ0(r;E), (5.38a)

the operators U± tend to U0 when the potential vanishes,

lim
V0→0

U± = U0. (5.38b)
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6. Construction of the ‘in’ and ‘out’ bras and kets

The solutions to the Lippmann–Schwinger equation are eigenvectors of the Hamiltonian whose
eigenvalues lie in the continuous spectrum. As explained thoroughly in [14, 19], eigenvectors
whose eigenvalues lie in the continuous spectrum must be treated as distributions by way of
the rigged Hilbert space. In this section, we construct the ‘in’ and ‘out’ bras and kets together
with the rigged Hilbert spaces that accommodate them. As it turns out, the RHS constructed
in [14–16] suffices for such purpose. The results of this section will be summarized by
proposition 1 at the end of this section.

6.1. The ‘in’ kets

The definition of a ket is borrowed from the theory of distributions [21]. Given a function
f (x) and a space of test functions Φ, the antilinear functional F associated with the function
f (x) is an integral operator whose kernel is precisely f (x):

F(ϕ) =
∫

dx ϕ(x)f (x). (6.1)

The ‘bad behaviour’ of the distribution f (x) must be compensated by the ‘nice behaviour’ of
the test function ϕ(x), so the integral (6.1) makes sense.

By using definition (6.1), we associate an ‘in’ ket |E+〉 with the ‘in’ eigenfunction χ+(r;E)

for each E ∈ [0,∞):

|E+〉 : Φ �−→ C

ϕ+ �−→ 〈ϕ+|E+〉 ≡
∫ ∞

0
dr ϕ+(r)χ+(r;E).

(6.2a)

In Dirac’s notation, the action of |E+〉 is written as

〈ϕ+|E+〉 ≡
∫ ∞

0
dr〈ϕ+|r〉〈r|E+〉. (6.2b)

Note that even though χ+(r;E) ≡ 〈r|E+〉 is also meaningful for complex energies, the
energy in equations (6.2a)–(6.2b) runs only over Sp(H) = [0,∞), because in this paper we
restrict ourselves to bras and kets associated with energies that belong to the spectrum of the
Hamiltonian.

We now need to find the subspace Φ on which definition (6.2a) makes sense. Besides
making (6.2a) well defined, the space Φ must also be invariant under the action of the
observables of the system. The invariance of Φ is a crucial property, since it entails finite
expectation values and well-defined commutation relations, and since it allows us to apply
observables on the elements of Φ as many times as wished [19]. Since in this paper the only
observable we are concerned with is the Hamiltonian, we shall simply require invariance under
H. Thus, the space Φ must satisfy the following conditions:

• the space Φ is invariant under the action of H ; (6.3a)

• the elements of Φ are such that the integral in equation (6.2a) makes sense. (6.3b)

In order to meet requirement (6.3a), the wavefunctions ϕ+(r) must at least be in the
maximal invariant subspace of H:

D =
∞⋂

n=0

D(Hn). (6.4)
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As shown in [14, 16], the space D is given by

D = {ϕ ∈ L2([0,∞), dr)|hnϕ(r) ∈ L2([0,∞), dr), ϕ(n)(a) = ϕ(n)(b) = 0,

hnϕ(0) = 0, n = 0, 1, 2, . . . ;ϕ(r) ∈ C∞([0,∞))}, (6.5)

where ϕ(n) denotes the nth derivative of ϕ. In order to meet requirement (6.3b), the
wavefunctions ϕ+(r) must behave well enough so the integral in equation (6.2a) is well
defined and yields a continuous, antilinear functional. From the expression for χ+(r;E),
equation (3.11), one can see that the ϕ+(r) have essentially to control purely imaginary
exponentials. Therefore, the space Φ constructed in [14, 16] meets requirements (6.3a)–
(6.3b):

Φ = {ϕ+ ∈ L2([0,∞), dr)|ϕ+ ∈ D, ‖ϕ+‖n,m < ∞, n,m = 0, 1, 2, . . .}, (6.6)

where the ‖‖n,m are given by

‖ϕ+‖n,m :=
√∫ ∞

0
dr|(1 + r)n(1 + H)mϕ+(r)|2, n,m = 0, 1, 2, . . . . (6.7)

The space Φ is the collection of square integrable functions that belong to the maximal
invariant subspace of H and for which the estimates (6.7) are finite. In particular, because
ϕ+(r) satisfies the estimates (6.7), ϕ+(r) falls off at infinity faster than any polynomial of r:

lim
r→∞(1 + r)nϕ+(r) = 0, n = 0, 1, 2, . . . . (6.8)

Obviously, the space Φ can also be seen as the maximal invariant subspace of the algebra
generated by the Hamiltonian and the operator multiplication by r. Estimates (6.7) are norms
(see proposition 1 at the end of this section), and therefore they define a topology (i.e., a
meaning of convergence of sequences) τΦ on Φ:

ϕ+
α

τΦ−−→
α→∞ , ϕ+ iff

∥∥ϕ+
α − ϕ+

∥∥
n,m

−−→
α→∞ 0, n,m = 0, 1, 2, . . . . (6.9)

Once we have constructed the space Φ, we can construct its topological dual Φ× as the
space of Φ-continuous antilinear functionals on Φ, and therewith the RHS corresponding to
the ‘in’ states,

Φ ⊂ L2([0,∞), dr) ⊂ Φ×. (6.10)

One can show that |E+〉 indeed belongs to Φ×; see proposition 1.
Conditions (6.5) and (6.7) that determine the space Φ are very similar to the conditions

satisfied by the Schwartz space on the positive real line, the major difference being that the
derivatives of the elements of Φ vanish at r = 0, a, b. This is why we shall write

Φ ≡ S(R+ − {a, b}), (6.11)

where R
+ ≡ [0,∞). With this notation, the RHS (6.10) can be written as

S(R+ − {a, b}) ⊂ L2(R+, dr) ⊂ S×(R+ − {a, b}). (6.12)

The ‘in’ kets should be eigenvectors of H as in equation (1.3). However, since the
Hamiltonian acts in principle only on its Hilbert space domain, and since the ‘in’ kets belong
to the antidual rather than to the Hilbert space, we need to extend the action of H from Φ to
Φ×, in order to specify how H acts on |E+〉. The theory of distributions provides us with a
precise prescription for such extension: given an operator A, the action of A on a functional
|F 〉 ∈ Φ× is defined as

〈ϕ|A|F 〉 ≡ 〈A†ϕ|F 〉, for all ϕ in Φ. (6.13)
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It is important to realize that definition (6.13) makes sense only when Φ is invariant under A†,

A†Φ ⊂ Φ. (6.14)

Note that when A is self-adjoint (e.g., A = H ), then A† = A, and when A is unitary (e.g.,
A = U+), then A† = A−1. Definition (6.13) can in turn be used to define the notion of eigenket
of a self-adjoint observable: a functional |a〉 in Φ× is an eigenket of A with eigenvalue a if

〈ϕ|A|a〉 = 〈Aϕ|a〉 = a〈ϕ|a〉, for all ϕ in Φ. (6.15)

When the ‘left sandwiching’ of this equation with the elements of Φ is understood and therefore
omitted, we shall simply write

A|a〉 = a|a〉. (6.16)

Thus, within the RHS setting, the eigenvalue equation (1.3) is to be understood as

〈ϕ+|H |E+〉 = E〈ϕ+|E+〉, ϕ+ ∈ Φ. (6.17)

This eigenvalue equation is proved in proposition 1.
By means of the unitary operator U+, which was constructed in section 5.1, we can obtain

the energy representation of the space Φ,

U+Φ = Φ̂+. (6.18)

We shall denote the elements of Φ̂+ by ϕ̂+(E) ≡ (U+ϕ
+)(E), where E ∈ [0,∞). Using the

notation of equation (6.11), the space Φ̂+ will be also denoted as

Φ̂+ ≡ Ŝ+(R
+ − {a, b}), (6.19)

and the energy representations of the triplets (6.10) and (6.12) will be respectively denoted by

Φ̂+ ⊂ L2([0,∞), dE) ⊂ Φ̂
×
+ (6.20)

and by

Ŝ+(R
+ − {a, b}) ⊂ L2(R+, dE) ⊂ Ŝ×

+ (R+ − {a, b}). (6.21)

The antidual extension of U+ yields the energy representation of the ‘in’ kets as

|Ê+〉 ≡ U+|E+〉. (6.22)

It can be shown that |Ê+〉 acts as the antilinear Schwartz delta functional; see proposition 1.

6.2. The ‘in’ bras

We now construct the bras 〈+E| that correspond to the kets |E+〉. Likewise the definition of a
ket, the definition of a bra is borrowed from the theory of distributions [21]. Given a function
f (x) and a space of test functions Φ, the linear functional F̃ generated by the function f (x)

is an integral operator whose kernel is the complex conjugate of f (x):

F̃ (ϕ) =
∫

dx ϕ(x)f (x). (6.23)

By using prescription (6.23), we define the bra 〈+E| associated with the ‘in’ eigenfunction
χ+(r;E) as

〈+E|ϕ+〉 ≡
∫ ∞

0
dr χ+(r;E)ϕ+(r), (6.24a)

which in Dirac’s notation becomes

〈+E|ϕ+〉 ≡
∫ ∞

0
dr〈+E|r〉〈r|ϕ+〉. (6.24b)

Here 〈+E|r〉 denotes the complex conjugate of χ+(r;E).
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From definitions (6.2a) and (6.24a), it follows that the action of the bras 〈+E| is complex
conjugated to the action of the kets |E+〉:

〈+E|ϕ+〉 = 〈ϕ+|E+〉 = ϕ̂+(E). (6.25)

In its turn, equation (6.25) shows that definition (6.24a) is meaningful when ϕ+ ∈ Φ. If we
denote by Φ′ the space of continuous linear functionals over Φ, then it is also easy to prove
that 〈+E| belongs to Φ′; see proposition 1. Therefore, the triplet

Φ ⊂ L2([0,∞), dr) ⊂ Φ′ (6.26)

is suitable to accommodate the ‘in’ bras. Using the notation introduced in equation (6.11), we
shall denote the triplet (6.26) as

S(R+ − {a, b}) ⊂ L2(R+, dr) ⊂ S ′(R − {a, b}). (6.27)

Our next task is showing that the ‘in’ bras are left eigenvectors of the Hamiltonian. For
this purpose, we need to specify how H acts on the bras, that is, how H acts on the dual space
Φ′. The action to the left of an operator A on a linear functional 〈F | ∈ Φ′ is defined as

〈F |A|ϕ〉 ≡ 〈F |A†ϕ〉, for all ϕ in Φ. (6.28)

In turn, equation (6.28) can be used to define the notion of eigenbra of a self-adjoint operator:
A functional 〈a| in Φ′ is an eigenbra of A with eigenvalue a if

〈a|A|ϕ〉 = 〈a|Aϕ〉 = a〈a|ϕ〉, for all ϕ in Φ. (6.29)

When the ‘right sandwiching’ of this equation with the elements of Φ is understood and
therefore omitted, we shall simply write

〈a|A = a〈a|. (6.30)

The eigenbra equation (1.5) is therefore to be understood as

〈+E|H |ϕ+〉 = E〈+E|ϕ+〉, ϕ+ ∈ S(R+ − {a, b}). (6.31)

Proposition 1 proves this equation.
The operator U+ can also be extended to the dual space, and such extension can be used

to obtain the energy representation of 〈+E|,
〈+Ê| = 〈+E|U+. (6.32)

In proposition 1, we show that 〈+Ê| acts as the linear Schwartz delta functional.
It should be emphasized that there is a one-to-one correspondence between ‘in’ bras and

‘in’ kets, since to each ‘in’ ket |E+〉 there corresponds an ‘in’ bra 〈+E|, and vice versa.

6.3. The ‘out’ kets

The construction of the ‘out’ kets closely parallels the construction of the ‘in’ kets. By way
of (6.1), we define the ‘out’ kets |E−〉 for each E ∈ [0,∞) as

|E−〉 : Φ �−→ C

ψ− �−→ 〈ψ−|E−〉 ≡
∫ ∞

0
dr ψ−(r)χ−(r;E),

(6.33a)

where χ−(r;E) is the ‘out’ eigenfunction of equation (3.11). In Dirac’s notation, the action
of |E−〉 reads as

〈ψ−|E−〉 ≡
∫ ∞

0
dr〈ψ−|r〉〈r|E−〉. (6.33b)
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Similarly to the ‘in’ case, the space Φ in definition (6.33a) must satisfy the following
conditions:

• the space Φ is invariant under the action of H ; (6.34a)

• the elements of Φ are such that the integral in equation (6.33a) makes sense. (6.34b)

Likewise the χ+(r;E), the χ−(r;E) behave like purely imaginary exponentials when
E ∈ [0,∞), which implies that conditions (6.34a)–(6.34b) are equivalent to conditions
(6.3a)–(6.3b). Therefore, the space of ‘out’ wavefunctions is the same as the space of ‘in’
wavefunctions:

Φ = {ψ− ∈ L2([0,∞), dr)|ψ− ∈ D, ‖ψ−‖n,m < ∞, n,m = 0, 1, 2, . . .}, (6.35)

where the ‖‖n,m are given by equation (6.7). It can be proved that the ‘out’ kets |E−〉 belong
to S×(R+ − {a, b}), and that they are eigenvectors of H; see proposition 1.

A comment on notation is in order here. We have used two different symbols, ϕ+ and
ψ−, to denote the elements of one and the same space Φ; see equations (6.35) and (6.6). The
reason why we use two different symbols is that we need to specify what kets are acting on
the elements of Φ. When the elements of Φ are acted upon by |E+〉 (|E−〉), we shall use
the notation 〈ϕ+|E+〉 (〈ψ−|E−〉). Another reason why we need two symbols is that, as we
shall explain in section 7, the time evolution of ϕ+ is interpreted in a different way to the time
evolution of ψ−.

By means of the unitary operator U−, which was constructed in section 5.2, we can obtain
another energy representation of the space Φ,

U−Φ = Φ̂−. (6.36)

We shall denote the elements of Φ̂− as ψ̂−(E) ≡ (U−ψ−)(E), where E ∈ [0,∞). Using the
notation of equation (6.11), the space Φ̂− will be also denoted as

Φ̂− ≡ Ŝ−(R+ − {a, b}), (6.37)

and the energy representations of triples (6.10) and (6.12), when obtained through U−, will
be respectively denoted by

Φ̂− ⊂ L2([0,∞), dE) ⊂ Φ̂
×
− (6.38)

and by

Ŝ−(R+ − {a, b}) ⊂ L2(R+, dE) ⊂ Ŝ×
− (R+ − {a, b}). (6.39)

As well, the dual extension of U− yields the energy representation of the ‘out’ kets,

|Ê−〉 ≡ U−|E−〉. (6.40)

In proposition 1, we prove that |Ê−〉 acts as the antilinear Schwartz delta functional.

6.4. The ‘out’ bras

By using prescription (6.23), we define the bra 〈−E| as

〈−E|ψ−〉 ≡
∫ ∞

0
drχ−(r;E)ψ−(r), (6.41a)

which in Dirac’s notation becomes

〈−E|ψ−〉 ≡
∫ ∞

0
dr〈−E|r〉〈r|ψ−〉, (6.41b)

where 〈−E|r〉 denotes the complex conjugate of χ−(r;E).
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From definitions (6.33a) and (6.41a), it follows that the action of the bras 〈−E| is complex
conjugated to the action of the kets |E−〉:

〈−E|ψ−〉 = 〈ψ−|E−〉 = ψ̂−(E). (6.42)

In turn, equation (6.42) shows that definition (6.41a) is meaningful when ψ− ∈ Φ. Therefore,
the ‘in’ bras belong to S ′(R − {a, b}), and they are left eigenvectors of H. Also, the energy
representation of 〈−E|, 〈−Ê| ≡ 〈−E|U−, acts as the linear Schwartz delta functional.

The following proposition summarizes the results of this section:

Proposition 1. The triplets of spaces (6.27) and (6.12) are rigged Hilbert spaces, and they
satisfy all the requirements needed to accommodate the Lippmann–Schwinger bras and kets.
More specifically,

(i) The ‖‖n,m are norms.
(ii) The space S(R+ − {a, b}) is dense in L2([0,∞), dr).

(iii) The space S(R+ − {a, b}) is invariant under the action of the Hamiltonian, and H is
Φ-continuous.

(iv) The kets |E±〉 are antilinear functionals over S(R+−{a, b}), i.e., |E±〉 ∈ S×(R+−{a, b}).
The bras 〈±E| are linear functionals over S(R+ − {a, b}), i.e., 〈±E| ∈ S ′(R − {a, b}).

(v) The kets |E±〉 are (right) eigenvectors of H with eigenvalue E,

H |E±〉 = E|E±〉. (6.43)

The bras 〈±E| are (left) eigenvectors of H with eigenvalue E,

〈±E|H = E〈±E|. (6.44)

(vi) In the energy representation, the ‘in’ and ‘out’ kets act as the antilinear Schwartz delta
functional:

〈̂ϕ+|Ê+〉 = ϕ̂+(E), (6.45)

〈ψ̂−|Ê−〉 = ψ̂−(E), (6.46)

whereas the ‘in’ and ‘out’ bras act as the linear Schwartz delta functional:

〈+Ê |̂ϕ+〉 = ϕ̂+(E), (6.47)

〈−Ê|ψ̂−〉 = ψ̂−(E). (6.48)

The proof of this proposition can be found in appendix C.

7. The time evolution of the Lippmann–Schwinger bras and kets

In the previous sections, we obtained the (time-independent) solutions to the Lippmann–
Schwinger equations. In this section, we obtain the time evolution of |E±〉, 〈±E|, ϕ+

and ψ−.

7.1. The time evolution of the ‘in’ states and kets

In quantum mechanics, time evolution follows from the action of the operator e−iHt/h̄. This
operator is unitary for each t ∈ (−∞,∞), and the set

{e−iHt/h̄| − ∞ < t < ∞} (7.1)
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is a one-parameter unitary group. For each instant t, the time evolution of the ‘in’ states is
then given by

ϕ+(r; t) = e−iHt/h̄ϕ+(r), t ∈ R. (7.2)

This time evolution can be conveniently written in terms of the ‘in’ eigenfunctions by formally
applying e−iHt/h̄ to both sides of the expansion (5.18):

(e−iHt/h̄ϕ+)(r) =
∫ ∞

0
dE e−iEt/h̄ϕ̂+(E)χ+(r;E), (7.3)

which in Dirac’s notation becomes

〈r|e−iHt/h̄|ϕ+〉 =
∫ ∞

0
dE e−iEt/h̄〈r|E+〉〈+E|ϕ+〉. (7.4)

Equation (7.3) is equivalent to defining e−iHt/h̄ as the operator that in the energy representation
acts as multiplication by e−iEt/h̄:

(U+e−iHt/h̄ϕ+)(E) = (e−iĤ t/h̄ϕ̂+)(E) = e−iEt/h̄ϕ̂+(E). (7.5)

Expressions (7.3) and (7.5) can be rigorously justified by way of equation (A.5) of theorem 2.
In order to obtain the time evolution of the ‘in’ kets |E+〉, we need to extend e−iHt/h̄ to

the antidual space. Such extension follows from prescription (6.13):

〈ϕ+|e−iHt/h̄|E+〉 := 〈eiHt/h̄ϕ+|E+〉, ϕ+ ∈ S(R+ − {a, b}). (7.6)

As noted in section 6, this definition makes sense only when S(R+ − {a, b}) is invariant under
eiHt/h̄,

eiHt/h̄S(R+ − {a, b}) ⊂ S(R+ − {a, b}). (7.7)

Such invariance is guaranteed for all t by Hunziker’s theorem [22], see the theorem below,
and therefore the time evolution of the ‘in’ kets is well defined for all t. We note in passing
that, as explained in [23], the invariance of the space of test functions is equivalent to having
a well-defined Heisenberg picture, and therefore, from a physical point of view, it is clear that
such invariance must hold.

In order to state Hunziker’s theorem, we need some definitions: a potential V is said to
satisfy the Kato condition [24] if D(H0) ⊂ D(V ), and if there exist constants a < 1, b < ∞,
such that, for all f ∈ D(H0),

‖Vf ‖ � a‖H0‖ + b‖f ‖. (7.8)

When V satisfies (7.8), then V can be seen as a small perturbation to the kinetic energy. For
any positive integer n, we define a linear subset Dn of L2(R+, dr) and a norm ‖‖n on Dn by

Dn :=
⋂
k�n

m�n−k

D(rkHm), ‖f ‖n := sup
k�n

m�n−k

‖rkHmf ‖, (7.9)

where m is a positive integer.

Theorem (Hunziker). When the potential V satisfies the Kato condition (7.8), then the
following holds for any positive integer n:

(i) Dn is invariant under the unitary group e−iHt/h̄.
(ii) For any f ∈ Dn, e−iHt/h̄f is continuous in t in the sense of the norm ‖‖n, and there exists

a constant cn such that

‖e−iHt/h̄f ‖n � cn(1 + |t |/h̄)n‖f ‖n. (7.10)
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(iii) For any f ∈ Dn,

rne−iHt/h̄f = e−iHt/h̄rnf +
i

h̄

∫ t

0
dτ e−iH(t−τ)/h̄[H, rn] e−iHτ/h̄f, (7.11)

the commutator being defined as

[H, rn] = − ih̄

m
ṙnP − h̄2

2m
r̈n, (7.12)

where ṙn and r̈n denote the first and second derivatives of rn with respect to r, and
where P ≡ −ih̄d/dr . In the L2-norm, the integrand is continuous in τ and bounded by
constant(1 + |τ |/h̄)n−1‖f ‖n.

We note that Hunziker’s theorem, as stated in [22], is only valid for Hamiltonians defined
on L2(RN, dx) for any dimension N. We therefore have to adapt the proof of Hunziker’s
theorem to our case, which involves a Hamiltonian defined on L2(R+, dr). Such adaptation
will not be reproduced here, since it is straightforward.

Our rectangular barrier potential clearly satisfies the Kato condition. Hence, Hunziker’s
theorem applies to our case. Because S(R+ − {a, b}) = ⋂∞

n=0 Dn, and because Hunziker’s
theorem guarantees that each Dn is invariant under e−iHt/h̄, the invariance (7.7) holds, and
hence definition (7.6) makes sense.

After seeing that it makes sense, we are going to see that definition (7.6) yields the
expected time evolution of the ‘in’ kets:

e−iHt/h̄|E+〉 = e−iEt/h̄|E+〉, −∞ < t < ∞, (7.13)

which in the RHS language is to be understood as

〈ϕ+|e−iHt/h̄|E+〉 = e−iEt/h̄〈ϕ+|E+〉, ϕ+ ∈ S(R+ − {a, b}). (7.14)

Equation (7.14) follows from the following chain of equalities:

〈ϕ+|e−iHt/h̄|E+〉 = 〈eiHt/h̄ϕ+|E+〉 (by definition (7.6))

= eiĤ t/h̄ϕ̂+(E) (by equation (7.5))

= e−iEt/h̄ϕ̂+(E) (by equation (7.5))

= e−iEt/h̄〈ϕ+|E+〉. (7.15)

Note that in the Hardy-function approach to the Lippmann–Schwinger equation, the time
evolution of the Lippmann–Schwinger bras and kets is not defined for all times, but only
for positive (or negative) times. Also, that the time evolution (7.13) is valid for all times
could have been anticipated from the physics of a scattering process: The ‘in’ solution of
the Lippmann–Schwinger equation represents a monoenergetic ingoing particle prepared in
the distant past (t = −∞) that hits the target and evolves into an outgoing particle in the
distant future (t = +∞). Thus, physically, the process described by the ‘in’ ket lasts from
t = −∞ until t = +∞, in agreement with (7.13) but in disagreement with the Hardy-function
approach.

7.2. The time evolution of the ‘in’ bras

The time evolution of 〈+E| can be obtained by extending e−iHt/h̄ to the dual space. Such
extension follows from definition (6.28):

〈+E|e−iHt/h̄|ϕ+〉 := 〈+E|eiHt/h̄ϕ+〉, ϕ+ ∈ S(R+ − {a, b}). (7.16)
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Likewise definition (7.6), definition (7.16) makes sense because S(R+ − {a, b}) is invariant
under eiHt/h̄.

By using equations (6.25) and (7.14), it can be easily seen that definition (7.16) yields

〈+E|e−iHt/h̄|ϕ+〉 = eiEt/h̄〈+E|ϕ+〉, −∞ < t < ∞, (7.17)

which, after omitting the ϕ+, becomes the expected result:

〈+E|e−iHt/h̄ = eiEt/h̄〈+E|, −∞ < t < ∞. (7.18)

7.3. The time evolution of the ‘out’ states, bras and kets

The time evolution of the ‘out’ states can be obtained by formally applying e−iHt/h̄ to both
sides of equation (5.33):

(e−iHt/h̄ψ−)(r) =
∫ ∞

0
dE e−iEt/h̄ψ̂−(E)χ−(r;E), (7.19)

which in Dirac’s notation becomes

〈r|e−iHt/h̄|ψ−〉 =
∫ ∞

0
dE e−iEt/h̄〈r|E−〉〈−E|ψ−〉. (7.20)

Likewise equation (7.3), equation (7.19) is tantamount to defining e−iHt/h̄ as the operator that
in the energy representation acts as multiplication by e−iEt/h̄:

(U−e−iHt/h̄ψ−)(E) = (e−iĤ t/h̄ψ̂−)(E) = e−iEt/h̄ψ̂−(E). (7.21)

Likewise expressions (7.3) and (7.5), expressions (7.19) and (7.21) can be rigorously justified
by way of equation (A.5) of theorem 2.

By using equation (7.19), and following the same steps as for the ‘in’ bras and kets, one
can easily obtain the time evolution of the ‘out’ bras and kets:

〈−E|e−iHt/h̄ = eiEt/h̄〈−E|, −∞ < t < ∞, (7.22)

e−iHt/h̄|E−〉 = e−iEt/h̄|E−〉, −∞ < t < ∞. (7.23)

As already mentioned in section 6, the time evolution of the ‘in’ states has a different
interpretation from the time evolution of the ‘out’ states. By the stationary-phase method, one
can easily see that the ‘in’ states are determined by the initial (i.e., prepared) condition that,
as t → −∞ and r → ∞, they move towards the potential region, whereas the ‘out’ states are
determined by the final (i.e., detected) condition that, as t → ∞ and r → ∞, they move away
from the potential region (see also [25, p 356]). This is why we have denoted the ‘in’ and the
‘out’ states by two different symbols, even though they belong to one and the same space Φ.

7.4. The time evolution of the free bras and kets

In [17], we constructed the free bras and kets, but we did not obtain their time evolution. We
do so here.

Either by direct calculation, or by making the potential zero in the time evolution of the
Lippmann–Schwinger bras and kets, one can easily see that the free bras and kets evolve in
time in the expected way:

〈E|e−iH0t/h̄ = eiEt/h̄〈E|, −∞ < t < ∞, (7.24)

e−iH0t/h̄|E〉 = e−iEt/h̄|E〉, −∞ < t < ∞, (7.25)
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where the free bras and kets act as the following integral operators (see [17]):

〈E|ϕ〉 =
∫ ∞

0
dr ϕ(r)χ0(r;E), (7.26)

〈ϕ|E〉 =
∫ ∞

0
dr ϕ(r)χ0(r;E). (7.27)

8. Other results of scattering theory

The ‘in’ bras and kets can be used to expand the ‘in’ states ϕ+. This expansion is the restriction
of the eigenfunction expansion (5.18) to the space Φ ≡ S(R+ − {a, b}),

〈r|ϕ+〉 =
∫ ∞

0
dE〈r|E+〉〈+E|ϕ+〉. (8.1)

Similarly, by restricting equation (5.15) to Φ ≡ S(R+ − {a, b}), we obtain

〈+E|ϕ+〉 =
∫ ∞

0
dr〈+E|r〉〈r|ϕ+〉. (8.2)

The corresponding expansions of the ψ− by the ‘out’ bras and kets follow from the restriction
of the eigenfunction expansions (5.33) and (5.32) to S(R+ − {a, b}):

〈r|ψ−〉 =
∫ ∞

0
dE〈r|E−〉〈−E|ψ−〉, (8.3)

〈−E|ψ−〉 =
∫ ∞

0
dr〈−E|r〉〈r|ψ−〉. (8.4)

Expansions (8.1) and (8.3) are the way through which the RHS gives meaning to the formal
expansions (2.7) and (2.8).

The S-matrix element (2.2) can be written in terms of the action of the Lippmann–
Schwinger bras and kets as in equation (2.12). Expansion (2.12) plays an important role in
resonance theory and is proved in appendix C. By a similar argument to that used to prove
equation (2.12), one can also prove equation (2.15). Many formal identities follow from
equations (2.12) and (2.15). For instance,

〈E|S|E′〉 = 〈−E|E′+〉 = S(E)δ(E − E′), (8.5)∫ ∞

0
dr〈E|r〉〈r|E′〉 =

∫ ∞

0
dr〈±E|r〉〈r|E′±〉 = δ(E − E′), (8.6)∫ ∞

0
dr〈−E|r〉〈r|E′+〉 = S(E)δ(E − E′). (8.7)

As always, these expressions are to be understood within the RHS setting as part of a ‘sandwich’
with well-behaved wavefunctions.

The Lippmann–Schwinger equations (1.1) and (1.4) are also understood as ‘sandwiched’
with elements of Φ. For example, equation (1.1) should be understood as

〈ϕ|E±〉 = 〈ϕ|E〉 + 〈ϕ| 1

E − H0 ± iε
V |E±〉, (8.8)
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that is,∫ ∞

0
dr ϕ(r)χ±(r;E) =

∫ ∞

0
dr ϕ(r)χ0(r;E) +

∫ ∞

0
dr dsϕ(r)G±

0 (r, s;E)V (s)χ±(s;E),

(8.9)

where ϕ is an element of Φ that can be attached to a superscript + or − depending on whether
it is an ‘in’ or an ‘out’ wavefunction. Note that since both |E+〉 and |E−〉 act on Φ, and since
|E〉 is also well defined on Φ, the concerns raised in [10] do not appear here. The concerns of
[10] appear because in [10] it is assumed that the Lippmann–Schwinger kets are functionals
over two distinct spaces of Hardy functions, whereas in this paper the ‘in’ and ‘out’ kets both
act on one and the same space Φ.

The Møller operators �± can be expressed in terms of the operators U± and U0 of
section 5 as [26]

�± = U
†
±U0. (8.10)

As is well known, and as can be checked directly by using equation (8.10), the Møller operators
intertwine the total and the free Hamiltonians:

H0 = �
†
±H�±. (8.11)

Since our potential does not bind bound states, the Møller operators are unitary operators on
L2([0,∞), dr). The well-known expression for the S-matrix operator in terms of the Møller
operators then reads as

S = �
†
−�+ = U

†
0U−U †

+U0. (8.12)

The operator S is also a unitary operator on L2([0,∞), dr). In the energy representation, the
operator (8.12) acts as multiplication by the function S(E) = J−(E)/J+(E). To be more
precise, if we define the operator Ŝ as

Ŝ : L2([0,∞), dE) �−→ L2([0,∞), dE)

f̂ �−→ (̂Sf̂ )(E) = S(E)f̂ (E),
(8.13)

then it can be proved (see appendix C) that

Ŝ = U0SU−1
0 . (8.14)

The Møller operators can be used to construct the space Φ0 of asymptotic ‘in’ ϕin and
‘out’ ψout states,

Φ0 = �
†
±Φ. (8.15)

A vector ϕin belongs to Φ0 if

〈+E|ϕ+〉 = 〈E|ϕin〉, (8.16)

where ϕ+ = �+ϕ
in. A vector ψout belongs to Φ0 if

〈−E|ψ−〉 = 〈E|ψout〉, (8.17)

where ψ− = �−ψout. From the last two equations, it follows that

�±|E〉 = |E±〉, (8.18)

�± =
∫ ∞

0
dE|E±〉〈E|. (8.19)

Again, equations (8.18) and (8.19) are to be understood as part of a ‘sandwich’ with elements
of Φ and Φ0.
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9. Conclusions

We have presented the RHS approach to the Lippmann–Schwinger equation. We have shown
that the Lippmann–Schwinger bras are linear functionals that belong to the dual space Φ′,
whereas the Lippmann–Schwinger kets are antilinear functionals that belong to the antidual
space Φ×. To every Lippmann–Schwinger ket there corresponds a Lippmann–Schwinger
bra, and vice versa. The Lippmann–Schwinger bras (kets) are left (right) eigenvectors of the
Hamiltonian, and their time evolution is defined for all times.

The following diagram summarizes the results concerning the ‘in’ states and kets:

H0; ϕin(r) Φ0 ⊂ L2([0,∞), dr) ⊂ Φ×
0 |E〉 position repr.

↓ �+ ↓ �+ ↓ �×
+

H ; ϕ+(r) Φ ⊂ L2([0,∞), dr) ⊂ Φ× |E+〉 position repr.
↓ U+ ↓ U+ ↓ U×

+

Ĥ ; ϕ̂+(E) Φ̂+ ⊂ L2([0,∞), dE) ⊂ Φ̂
×
+ |Ê+〉 energy repr.

(9.1)

The results concerning the ‘out’ states and kets are summarized by the following diagram:

H0; ψout(r) Φ0 ⊂ L2([0,∞), dr) ⊂ Φ×
0 |E〉 position repr.

↓ �− ↓ �− ↓ �×
−

H ; ψ−(r) Φ ⊂ L2([0,∞), dr) ⊂ Φ× |E−〉 position repr.
↓ U− ↓ U− ↓ U×

−
Ĥ ; ψ̂−(E) Φ̂− ⊂ L2([0,∞), dE) ⊂ Φ̂

×
− |Ê−〉 energy repr.

(9.2)

Analogous diagrams summarize the results for the ‘in’ and for the ‘out’ bras.
For the sake of simplicity, we have proved our results within the example of the spherical

shell potential and for zero angular momentum. Nonetheless, with obvious modifications, the
results of this paper remain valid for higher partial waves and for a large class of spherically
symmetric potentials that includes, in particular, potentials of finite range. Therefore, we
conclude that the natural mathematical setting for the solutions of the Lippmann–Schwinger
equation is the rigged Hilbert space rather than just the Hilbert space. That rigged Hilbert
space, however, seems to be unrelated to the rigged Hilbert spaces of Hardy functions of
[8–14].
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Appendix A. The Sturm–Liouville theory

In this paper, we have used several theorems that form the backbone of the Sturm–Liouville
theory. These theorems can be found in the treatise of Dunford and Schwartz [20]. For the
sake of completeness, we recall those theorems in this appendix.

The following theorem provides the procedure to obtain the Green function of H (cf
theorem XIII.3.16 of [20]):
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Theorem 1. Let H be the self-adjoint operator (4.4) derived from the real formal differential
operator (3.4) by the imposition of the boundary condition (4.2). Let Im(E) �= 0. Then there
is exactly one solution χ(r;E) of (h − E)σ = 0 square-integrable at 0 and satisfying the
boundary condition (4.2), and exactly one solution f (r;E) of (h−E)σ = 0 square-integrable
at infinity. The resolvent (E − H)−1 is an integral operator whose kernel G(r, s;E) is given
by

G(r, s;E) =


2m

h̄2

χ(r;E)f (s;E)

W(χ, f )
r < s

2m

h̄2

χ(s;E)f (r;E)

W(χ, f )
r > s,

(A.1)

where W(χ, f ) is the Wronskian of χ and f

W(χ, f ) = χf ′ − χ ′f. (A.2)

The following theorem provides the operators U± (cf theorem XIII.5.13 of [20]):

Theorem 2 (Weyl–Kodaira). Let h be the formally self-adjoint differential operator (3.4)
defined on the interval [0,∞). Let H be the self-adjoint operator (4.4). Let � be an open
interval of the real axis, and suppose that there is given a set {σ1(r;E), σ2(r;E)} of functions,
defined and continuous on (0,∞) × �, such that for each fixed E in �, {σ1(r;E), σ2(r;E)}
forms a basis for the space of solutions of hσ = Eσ . Then there exists a positive 2 × 2 matrix
measure {ρij } defined on �, such that

(i) the limit

(Uf )i(E) = lim
c→0

lim
d→∞

[∫ d

c

f (r)σi(r;E) dr

]
(A.3)

exists in the topology of L2(�, {ρij }) for each f in L2([0,∞), dr) and defines an isometric
isomorphism U of E(�)L2([0,∞), dr) onto L2(�, {ρij }), where E(�) is the spectral
projection associated with �;

(ii) for each Borel function G defined on the real line and vanishing outside �,

UD(G(H)) = {[fi] ∈ L2(�, {ρij })|[Gfi] ∈ L2(�, {ρij })} (A.4)

and

(UG(H)f )i(E) = G(E)(Uf )i(E), i = 1, 2, E ∈ �, f ∈ D(G(H)). (A.5)

The following theorem provides the inverses of U± (cf theorem XIII.5.14 of [20]):

Theorem 3 (Weyl–Kodaira). Let H, �, {ρij }, etc, be as in theorem 2. Let E0 and E1 be the
end points of �. Then

(i) the inverse of the isometric isomorphism U of E(�)L2([0,∞), dr) onto L2(�, {ρij }) is
given by the formula

(U−1F)(r) = lim
µ0→E0

lim
µ1→E1

∫ µ1

µ0

 2∑
i,j=1

Fi(E)σj (r;E)ρij (dE)

 (A.6)

where F = [F1, F2] ∈ L2(�,
{
ρij

}
), the limit existing in the topology of L2([0,∞), dr);
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(ii) if G is a bounded Borel function vanishing outside a Borel set e whose closure is compact
and contained in �, then G(H) has the representation

G(H)f (r) =
∫ ∞

0
f (s)K(H, r, s) ds, (A.7)

where

K(H, r, s) =
2∑

i,j=1

∫
e

G(E)σi(s;E)σj (r;E)ρij (dE). (A.8)

The spectral measures are provided by the following theorem (cf theorem XIII.5.18 of [20]):

Theorem 4 (Titchmarsh–Kodaira). Let � be an open interval of the real axis and O be an open
set in the complex plane containing �. Let {σ1(r;E), σ2(r;E)} be a set of functions which
form a basis for the solutions of the equation hσ = Eσ,E ∈ O, and which are continuous on
(0,∞) × O and analytically dependent on E for E in O. Suppose that the kernel G(r, s;E)

for the resolvent (E − H)−1 has a representation

G(r, s;E) =

∑2

i,j=1 θ−
ij (E)σi(r;E)σj (s;E), r < s,∑2

i,j=1 θ+
ij (E)σi(r;E)σj (s;E), r > s,

(A.9)

for all E in Re(H) ∩ O, and that {ρij } is a positive matrix measure on � associated with H as
in theorem 2. Then the functions θ±

ij are analytic in Re(H) ∩ O, and given any bounded open
interval (E1, E2) ⊂ �, we have for 1 � i, j � 2,

ρij ((E1, E2)) = lim
δ→0

lim
ε→0+

1

2π i

∫ E2−δ

E1+δ

[θ−
ij (E − iε) − θ−

ij (E + iε)] dE

= lim
δ→0

lim
ε→0+

1

2π i

∫ E2−δ

E1+δ

[
θ+
ij (E − iε) − θ+

ij (E + iε)
]

dE.

(A.10)

Appendix B. List of auxiliary functions

The coefficients in equation (3.13) are given by

J1(E) = J1(k) = 1

2
e−iκa

(
sin(ka) +

k

iκ
cos(ka)

)
, (B.1)

J2(E) = J2(k) = 1

2
eiκa

(
sin(ka) − k

iκ
cos(ka)

)
, (B.2)

J3(E) = J3(k) = 1

2
e−ikb

[(
1 +

κ

k

)
eiκbJ1(k) +

(
1 − κ

k

)
e−iκbJ2(k)

]
, (B.3)

J4(E) = J4(k) = 1

2
eikb
[(

1 − κ

k

)
eiκbJ1(k) +

(
1 +

κ

k

)
e−iκbJ2(k)

]
, (B.4)

where k is given by equation (3.10) and κ is given by

κ =
√

2m

h̄2 (E − V0). (B.5)



3976 R de la Madrid

The coefficients in equation (4.9) are given by

A±
3 (E) = A±

3 (k) = 1

2
e−iκb

(
1 ± k

κ

)
e±ikb, (B.6)

A±
4 (E) = A±

4 (k) = 1

2
eiκb

(
1 ∓ k

κ

)
e±ikb, (B.7)

A±
1 (E) = A±

1 (k) = 1

2
e−ika

[(
1 +

κ

k

)
eiκaA±

3 (k) +
(

1 − κ

k

)
e−iκaA±

4 (k)
]
, (B.8)

A±
2 (E) = A±

2 (k) = 1

2
eika
[(

1 − κ

k

)
eiκaA±

3 (k) +
(

1 +
κ

k

)
e−iκaA±

4 (k)
]
. (B.9)

The coefficients in equation (5.1b) are given by

C1(E) = C1(k) = 1

2
e−iκa

(
cos(ka) − k

iκ
sin(ka)

)
, (B.10)

C2(E) = C2(k) = 1

2
eiκa

(
cos(ka) +

k

iκ
sin(ka)

)
, (B.11)

C3(E) = C3(k) = 1

2
e−ikb

[(
1 +

κ

k

)
eiκbC1(k) +

(
1 − κ

k

)
e−iκbC2(k)

]
, (B.12)

C4(E) = C4(k) = 1

2
eikb
[(

1 − κ

k

)
eiκbC1(k) +

(
1 +

κ

k

)
e−iκbC2(k)

]
. (B.13)

Appendix C. Proofs

Here we prove some results we invoked throughout this paper. In the proofs, it will be
convenient to denote the dual and the antidual extensions of H (U+) by, respectively, H× (U×

+

)
and H ′ (U ′

+), in order to make clear that the operator H (U+) is acting outside the Hilbert
space.

Proof of proposition 1. (i), (ii) and (iii) were proved in [14, 16].
(iv) From definition (6.2a), it is easy to see that |E+〉 is an antilinear functional. In order

to show that |E+〉 is Φ-continuous, we define

C+(E) := sup
r∈[0,∞)

|χ+(r;E)|. (C.1)

From the expression for χ+(r;E) in equation (3.11), it is clear that C+(E) is a finite number
for each energy E. Now, because

|〈ϕ+|E+〉| =
∣∣∣∣∫ ∞

0
drϕ+(r)χ+(r;E)

∣∣∣∣
�
∫ ∞

0
dr|ϕ+(r)||χ+(r;E)|

� C+(E)

∫ ∞

0
dr|ϕ+(r)|

= C+(E)

∫ ∞

0
dr

1

1 + r
(1 + r)|ϕ+(r)|

� C+(E)

(∫ ∞

0
dr

1

(1 + r)2

)1/2 (∫ ∞

0
dr
∣∣(1 + r)ϕ+(r)

∣∣2)1/2

= C+(E)‖ϕ+‖1,0, (C.2)
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the functional |E+〉 is Φ-continuous. In a similar way, one can prove that |E−〉 is also a
Φ-continuous antilinear functional.

It is clear from definition (6.24a) that 〈+E| is a linear functional over S(R+ − {a, b}).
Because

|〈+E|ϕ+〉| = |〈ϕ+|E+〉| by (6.25)

� C+(E)‖ϕ+‖1,0, by (C.2)
(C.3)

the functional 〈+E| is Φ-continuous. That 〈−E| is also a Φ-continuous linear functional can
be proved in a similar way.

(v) In order to prove that |E+〉 is a (generalized) eigenvector of H, we make use of the
conditions satisfied by the elements of S(R+ − {a, b}) at r = 0,∞:

〈ϕ+|H×|E+〉 = 〈Hϕ+|E+〉
=
∫ ∞

0
dr

(
− h̄2

2m

d2

dr2
+ V (r)

)
ϕ+(r)χ+(r;E)

= − h̄2

2m

[
dϕ+(r)

dr
χ+(r;E)

]∞

0

+
h̄2

2m

[
ϕ+(r)

dχ+(r;E)

dr

]∞
0

+
∫ ∞

0
dr ϕ+(r)

(
− h̄2

2m

d2

dr2
+ V (r)

)
χ+(r;E)

=
∫ ∞

0
dr ϕ+(r)

(
− h̄2

2m

d2

dr2
+ V (r)

)
χ+(r;E)

= E〈ϕ+|E+〉, (C.4)

where we have used conditions (6.5) and (6.8) in the next to the last step and equation (3.8) in
the last step. The proof that |E−〉 is an eigenvector of H follows the pattern of equation (C.4).

On the other hand, because

〈+E|H ′|ϕ+〉 = 〈+E|Hϕ+〉
= 〈Hϕ+|E+〉 by (6.25)

= E〈ϕ+|E+〉 by (C.4)

= E〈+E|ϕ+〉, by (6.25) (C.5)

the bra 〈+E| is a (generalized) left eigenvector of H. An argument similar to that in
equation (C.5) shows that 〈−E| is also a left eigenvector of H.

(v) Because

〈̂ϕ+|Ê+〉 = 〈̂ϕ+|U×
+ |E+〉

= 〈U †
+ϕ̂

+|E+〉
= 〈ϕ+|E+〉
= ϕ̂+(E), (C.6)

|Ê+〉 acts as the antilinear Schwartz delta functional. A similar argument shows that |Ê−〉 also
acts as the antilinear Schwartz delta functional.

Equation (6.47) follows from

〈+Ê |̂ϕ+〉 = 〈̂ϕ+|Ê+〉 = ϕ̂+(E). (C.7)

Finally, equation (6.48) follows from a chain of equalities similar to (C.7). �

Proof of equation (8.14). In order to prove equation (8.14), we first prove that

(U−g)(E) = S(E)(U+g)(E), g ∈ L2([0,∞), dr). (C.8)
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Since by equation (3.16)

χ+(r;E) = S(E)χ−(r;E), (C.9)

and since

S(E) = 1

S(E)
, E > 0, (C.10)

we conclude that

χ−(r;E) = S(E)χ+(r;E). (C.11)

By substituting equation (C.11) into the integral expression (5.32) for the operator U−, we get
to

(U−g)(E) =
∫ ∞

0
dr g(r)S(E)χ+(r;E) = S(E)

∫ ∞

0
dr g(r)χ+(r;E). (C.12)

Comparison of (C.12) with (5.15) leads to (C.8).
Now, (

U0SU−1
0

)
f̂ = (U0U

†
0U−U †

+U0U
−1
0

)
f̂ by (8.12)

= (U−U †
+

)
f̂

= S(E)(U+U
†
+)f̂ by (C.8)

= Ŝf̂ , (C.13)

which proves (8.14).
�

Proof of equation (2.12). Let ψ−, ϕ+ ∈ Φ. Since ψ− and ϕ+ belong, in particular, to
L2([0,∞), dr), we can let the unitary operator U− act on both of them,

(ψ−, ϕ+) = (U−ψ−, U−ϕ+). (C.14)

The vectors U−ψ− and U−ϕ+ belong to L2([0,∞), dE). Therefore,

(ψ−, ϕ+) = (U−ψ−, U−ϕ+) =
∫ ∞

0
dE (U−ψ−)(E)(U−ϕ+)(E). (C.15)

From equation (C.8) it follows that

(U−ϕ+)(E) = S(E)(U+ϕ
+)(E). (C.16)

Thus,

(ψ−, ϕ+) =
∫ ∞

0
dE (U−ψ−)(E)S(E)(U+ϕ

+)(E). (C.17)

Since ψ−, ϕ+ ∈ Φ, we are allowed to write

(U−ψ−)(E) = 〈ψ−|E−〉. (C.18)

(U+ϕ
+)(E) = 〈+E|ϕ+〉. (C.19)

Substitution of (C.18) and (C.19) into (C.17) leads to (2.12). �
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